Overview
Continuous learning enables ATLAS to improve automatically from production usage, creating a self-improving system that gets better with every interaction. This approach combines online optimization with production feedback loops.System Architecture
Implementation
1
Set Up Feedback Collection
Implement feedback mechanisms in your production system:
Copy
from dataclasses import dataclass
from typing import Optional
import time
@dataclass
class FeedbackEvent:
request_id: str
prompt: str
response: str
user_rating: Optional[float] = None
implicit_signal: Optional[str] = None
timestamp: float = None
metadata: dict = None
class FeedbackCollector:
"""
Collect and process production feedback
"""
def __init__(self, buffer_size=1000):
self.buffer = []
self.buffer_size = buffer_size
async def collect(self, event: FeedbackEvent):
"""
Add feedback event to buffer
"""
if not event.timestamp:
event.timestamp = time.time()
self.buffer.append(event)
# Trigger optimization if buffer full
if len(self.buffer) >= self.buffer_size:
await self.trigger_optimization()
def collect_implicit_feedback(self, request_id: str, signal: str):
"""
Collect implicit signals (copy, share, retry, etc.)
"""
event = FeedbackEvent(
request_id=request_id,
implicit_signal=signal,
timestamp=time.time()
)
self.buffer.append(event)
Implicit signals (copy events, time spent, retries) often provide more reliable feedback than explicit ratings.
2
Process Feedback Signals
Convert various feedback types into training signals:
Copy
class FeedbackProcessor:
"""
Process feedback into training signals
"""
def process_feedback(self, events):
"""
Convert feedback events to training data
"""
training_samples = []
for event in events:
score = self.compute_score(event)
if score > self.quality_threshold:
training_samples.append({
'prompt': event.prompt,
'response': event.response,
'reward': score,
'metadata': event.metadata
})
return training_samples
def compute_score(self, event):
"""
Unified scoring from multiple signals
"""
score = 0.0
# Explicit rating (if available)
if event.user_rating:
score += event.user_rating * 0.5
# Implicit signals
signal_scores = {
'copy': 0.8, # User copied response
'share': 0.9, # User shared response
'retry': -0.3, # User requested retry
'dismiss': -0.5, # User dismissed quickly
'engage': 0.6 # Long engagement time
}
if event.implicit_signal:
score += signal_scores.get(event.implicit_signal, 0) * 0.5
return max(0, min(1, score)) # Normalize to [0, 1]
Filter low-quality feedback to prevent model degradation. Set appropriate quality thresholds.
3
Implement Learning Triggers
Define when and how to trigger learning updates:
Copy
class LearningScheduler:
"""
Schedule continuous learning updates
"""
def __init__(self):
self.triggers = {
'sample_count': 100, # Min samples
'time_interval': 3600, # Max seconds
'performance_drop': 0.1, # Trigger on degradation
'error_threshold': 0.05 # Error rate trigger
}
self.last_update = time.time()
self.baseline_performance = None
def should_trigger(self, metrics, sample_count):
"""
Determine if learning should trigger
"""
# Sample count trigger
if sample_count >= self.triggers['sample_count']:
return True, 'sample_threshold'
# Time-based trigger
if time.time() - self.last_update > self.triggers['time_interval']:
return True, 'time_interval'
# Performance degradation trigger
if self.baseline_performance:
current = metrics.get('accuracy', 1.0)
if self.baseline_performance - current > self.triggers['performance_drop']:
return True, 'performance_drop'
# Error rate trigger
if metrics.get('error_rate', 0) > self.triggers['error_threshold']:
return True, 'high_errors'
return False, None
async def execute_update(self, training_samples):
"""
Execute learning update
"""
print(f"Triggering update with {len(training_samples)} samples")
# Run online optimization
optimizer = OnlineOptimizer()
improved_model = await optimizer.optimize(
training_samples,
num_iterations=50
)
# Update timestamp
self.last_update = time.time()
return improved_model
4
Deploy Update Pipeline
Implement safe model updates in production:
Copy
class SafeModelUpdater:
"""
Safely update models in production
"""
def __init__(self, primary_model, validator):
self.primary_model = primary_model
self.validator = validator
self.shadow_model = None
self.update_history = []
async def update(self, new_model):
"""
Safe production update with validation
"""
# Step 1: Validate new model
validation_result = await self.validator.validate(new_model)
if not validation_result.passed:
print(f"Model failed validation: {validation_result.errors}")
return False
# Step 2: Shadow deployment
self.shadow_model = new_model
shadow_metrics = await self.shadow_test(duration=300) # 5 min test
# Step 3: Compare performance
if shadow_metrics['performance'] < self.primary_model.performance * 0.95:
print("Shadow model underperforming, rejecting update")
return False
# Step 4: Gradual rollout
await self.gradual_rollout(new_model)
# Step 5: Update primary
self.primary_model = new_model
self.update_history.append({
'timestamp': time.time(),
'performance': shadow_metrics['performance']
})
return True
async def shadow_test(self, duration):
"""
Test model in shadow mode
"""
start_time = time.time()
metrics = {'requests': 0, 'successes': 0}
while time.time() - start_time < duration:
# Process requests with both models
request = await self.get_next_request()
primary_response = self.primary_model.process(request)
shadow_response = self.shadow_model.process(request)
# Compare responses
if self.responses_similar(primary_response, shadow_response):
metrics['successes'] += 1
metrics['requests'] += 1
metrics['performance'] = metrics['successes'] / max(1, metrics['requests'])
return metrics
async def gradual_rollout(self, new_model):
"""
Gradually shift traffic to new model
"""
rollout_stages = [0.1, 0.25, 0.5, 0.75, 1.0]
for percentage in rollout_stages:
self.traffic_split = percentage
await asyncio.sleep(60) # Monitor for 1 minute
metrics = await self.collect_metrics()
if metrics['error_rate'] > 0.05:
print(f"High error rate at {percentage*100}% rollout, rolling back")
self.traffic_split = 0
return False
return True
5
Monitor Learning Progress
Track continuous learning effectiveness:
Copy
import wandb
from datetime import datetime
class LearningMonitor:
"""
Monitor continuous learning progress
"""
def __init__(self):
wandb.init(project="atlas-continuous-learning")
self.metrics_buffer = []
def log_update(self, update_info):
"""
Log learning update event
"""
wandb.log({
'update_timestamp': datetime.now().isoformat(),
'samples_used': update_info['sample_count'],
'trigger_reason': update_info['trigger'],
'performance_before': update_info['performance_before'],
'performance_after': update_info['performance_after'],
'improvement': update_info['improvement'],
'update_duration': update_info['duration']
})
def log_production_metrics(self, metrics):
"""
Log ongoing production metrics
"""
wandb.log({
'accuracy': metrics['accuracy'],
'latency_p50': metrics['latency_p50'],
'latency_p99': metrics['latency_p99'],
'error_rate': metrics['error_rate'],
'feedback_score': metrics['avg_feedback'],
'requests_per_second': metrics['rps']
})
def generate_report(self):
"""
Generate learning effectiveness report
"""
report = {
'total_updates': len(self.update_history),
'avg_improvement': np.mean([u['improvement'] for u in self.update_history]),
'learning_velocity': self.compute_learning_velocity(),
'stability_score': self.compute_stability()
}
return report
Advanced Techniques
Selective Learning
Learn from high-value interactions:Copy
class SelectiveLearner:
"""
Selectively learn from high-value feedback
"""
def __init__(self):
self.value_estimator = self.load_value_model()
self.learning_buffer = PriorityQueue()
def estimate_learning_value(self, feedback_event):
"""
Estimate value of learning from this event
"""
features = {
'uncertainty': self.compute_uncertainty(feedback_event.prompt),
'novelty': self.compute_novelty(feedback_event.prompt),
'error_magnitude': abs(feedback_event.expected - feedback_event.actual),
'user_expertise': feedback_event.metadata.get('user_level', 0),
'task_importance': feedback_event.metadata.get('priority', 0)
}
value_score = self.value_estimator.predict(features)
return value_score
def add_to_buffer(self, event):
"""
Add high-value events to learning buffer
"""
value = self.estimate_learning_value(event)
if value > self.threshold:
self.learning_buffer.put((-value, event)) # Negative for max-heap
def get_learning_batch(self, batch_size=32):
"""
Get highest-value samples for learning
"""
batch = []
for _ in range(min(batch_size, self.learning_buffer.qsize())):
_, event = self.learning_buffer.get()
batch.append(event)
return batch
Catastrophic Forgetting Prevention
Prevent degradation on previously learned tasks:Copy
class MemoryConsolidation:
"""
Prevent catastrophic forgetting during continuous learning
"""
def __init__(self, memory_size=1000):
self.episodic_memory = []
self.memory_size = memory_size
self.task_boundaries = []
def store_experiences(self, experiences, task_id):
"""
Store representative experiences
"""
# Select diverse, representative samples
representative = self.select_representative(experiences)
for exp in representative:
if len(self.episodic_memory) >= self.memory_size:
# Replace oldest or least important
self.episodic_memory.pop(0)
self.episodic_memory.append({
'experience': exp,
'task_id': task_id,
'importance': self.compute_importance(exp)
})
def create_replay_batch(self, current_batch, replay_ratio=0.5):
"""
Mix current and past experiences
"""
replay_size = int(len(current_batch) * replay_ratio)
# Sample from episodic memory
if self.episodic_memory:
replay_samples = random.sample(
self.episodic_memory,
min(replay_size, len(self.episodic_memory))
)
# Combine with current batch
combined_batch = current_batch + [s['experience'] for s in replay_samples]
random.shuffle(combined_batch)
return combined_batch
return current_batch
def compute_importance(self, experience):
"""
Compute importance for retention
"""
# Factors: difficulty, uniqueness, performance impact
return experience.get('learning_progress', 0.5)
Active Learning
Actively seek informative feedback:Copy
class ActiveLearner:
"""
Actively request feedback on uncertain cases
"""
def __init__(self, uncertainty_model):
self.uncertainty_model = uncertainty_model
self.feedback_requests = []
def should_request_feedback(self, prompt, response):
"""
Decide whether to request feedback
"""
uncertainty = self.uncertainty_model.compute_uncertainty(
prompt,
response
)
# Request feedback for uncertain cases
if uncertainty > self.uncertainty_threshold:
return True
# Random sampling for baseline
if random.random() < self.baseline_rate:
return True
return False
def generate_feedback_request(self, prompt, response):
"""
Create user-friendly feedback request
"""
return {
'message': "Help us improve! Was this response helpful?",
'options': [
{'label': 'Very helpful', 'value': 1.0},
{'label': 'Somewhat helpful', 'value': 0.5},
{'label': 'Not helpful', 'value': 0.0}
],
'context': {
'prompt': prompt,
'response': response,
'uncertainty': self.uncertainty_model.last_uncertainty
}
}
Production Patterns
Pattern 1: Blue-Green Deployment
Copy
class BlueGreenDeployment:
"""
Safe production updates with instant rollback
"""
def __init__(self):
self.blue_model = self.load_model('blue')
self.green_model = None
self.active = 'blue'
async def deploy_update(self, new_model):
"""
Deploy update to inactive environment
"""
# Deploy to green
self.green_model = new_model
# Test green environment
test_result = await self.test_green()
if test_result.success:
# Switch traffic
self.active = 'green'
print("Switched to green environment")
else:
# Keep blue active
print("Green deployment failed, staying on blue")
return test_result
def rollback(self):
"""
Instant rollback to previous version
"""
self.active = 'blue' if self.active == 'green' else 'green'
print(f"Rolled back to {self.active}")
Pattern 2: Canary Deployment
Copy
class CanaryDeployment:
"""
Gradual rollout with monitoring
"""
def __init__(self):
self.stable_model = self.load_model('stable')
self.canary_model = None
self.canary_percentage = 0
async def deploy_canary(self, new_model):
"""
Gradually increase traffic to new model
"""
self.canary_model = new_model
stages = [1, 5, 10, 25, 50, 100] # Percentage stages
for percentage in stages:
self.canary_percentage = percentage
print(f"Canary at {percentage}%")
# Monitor for 5 minutes
await asyncio.sleep(300)
metrics = await self.collect_metrics()
if not self.health_check(metrics):
print(f"Canary failed at {percentage}%")
self.canary_percentage = 0
return False
# Full deployment successful
self.stable_model = self.canary_model
self.canary_model = None
return True
Monitoring Dashboard
Create a comprehensive monitoring dashboard:Copy
def create_dashboard():
"""
Create Streamlit dashboard for continuous learning
"""
import streamlit as st
import plotly.graph_objs as go
st.title("ATLAS Continuous Learning Dashboard")
# Learning progress
col1, col2, col3 = st.columns(3)
with col1:
st.metric(
"Total Updates",
metrics['total_updates'],
delta=metrics['updates_today']
)
with col2:
st.metric(
"Avg Improvement",
f"{metrics['avg_improvement']:.1%}",
delta=f"{metrics['recent_improvement']:.1%}"
)
with col3:
st.metric(
"Learning Velocity",
f"{metrics['velocity']:.2f}",
delta=f"{metrics['velocity_change']:.2f}"
)
# Performance over time
fig = go.Figure()
fig.add_trace(go.Scatter(
x=metrics['timestamps'],
y=metrics['performance'],
mode='lines+markers',
name='Performance'
))
fig.add_trace(go.Scatter(
x=metrics['update_times'],
y=metrics['update_performance'],
mode='markers',
marker=dict(size=10, color='red'),
name='Updates'
))
st.plotly_chart(fig)
# Feedback distribution
st.subheader("Feedback Distribution")
feedback_chart = go.Figure(data=[
go.Bar(
x=['Positive', 'Neutral', 'Negative'],
y=metrics['feedback_distribution']
)
])
st.plotly_chart(feedback_chart)
# Recent learning events
st.subheader("Recent Learning Events")
st.dataframe(metrics['recent_events'])
Troubleshooting
Model Performance Degradation
Model Performance Degradation
Problem: Performance drops after updateSolutions:
- Increase validation threshold
- Implement stricter shadow testing
- Increase replay ratio for memory consolidation
- Review feedback quality filters
Slow Learning Convergence
Slow Learning Convergence
Problem: Improvements are minimalSolutions:
- Increase learning rate carefully
- Focus on high-value feedback
- Improve feedback signal quality
- Consider offline retraining
High Update Frequency
High Update Frequency
Problem: Too many updates affecting stabilitySolutions:
- Increase sample count threshold
- Implement update rate limiting
- Batch updates into larger intervals
- Add stability metrics to triggers