Overview

Continuous learning enables ATLAS to improve automatically from production usage, creating a self-improving system that gets better with every interaction. This approach combines online optimization with production feedback loops.

System Architecture

Implementation

1

Set Up Feedback Collection

Implement feedback mechanisms in your production system:
from dataclasses import dataclass
from typing import Optional
import time

@dataclass
class FeedbackEvent:
    request_id: str
    prompt: str
    response: str
    user_rating: Optional[float] = None
    implicit_signal: Optional[str] = None
    timestamp: float = None
    metadata: dict = None

class FeedbackCollector:
    """
    Collect and process production feedback
    """

    def __init__(self, buffer_size=1000):
        self.buffer = []
        self.buffer_size = buffer_size

    async def collect(self, event: FeedbackEvent):
        """
        Add feedback event to buffer
        """
        if not event.timestamp:
            event.timestamp = time.time()

        self.buffer.append(event)

        # Trigger optimization if buffer full
        if len(self.buffer) >= self.buffer_size:
            await self.trigger_optimization()

    def collect_implicit_feedback(self, request_id: str, signal: str):
        """
        Collect implicit signals (copy, share, retry, etc.)
        """
        event = FeedbackEvent(
            request_id=request_id,
            implicit_signal=signal,
            timestamp=time.time()
        )
        self.buffer.append(event)
Implicit signals (copy events, time spent, retries) often provide more reliable feedback than explicit ratings.
2

Process Feedback Signals

Convert various feedback types into training signals:
class FeedbackProcessor:
    """
    Process feedback into training signals
    """

    def process_feedback(self, events):
        """
        Convert feedback events to training data
        """
        training_samples = []

        for event in events:
            score = self.compute_score(event)

            if score > self.quality_threshold:
                training_samples.append({
                    'prompt': event.prompt,
                    'response': event.response,
                    'reward': score,
                    'metadata': event.metadata
                })

        return training_samples

    def compute_score(self, event):
        """
        Unified scoring from multiple signals
        """
        score = 0.0

        # Explicit rating (if available)
        if event.user_rating:
            score += event.user_rating * 0.5

        # Implicit signals
        signal_scores = {
            'copy': 0.8,      # User copied response
            'share': 0.9,     # User shared response
            'retry': -0.3,    # User requested retry
            'dismiss': -0.5,  # User dismissed quickly
            'engage': 0.6     # Long engagement time
        }

        if event.implicit_signal:
            score += signal_scores.get(event.implicit_signal, 0) * 0.5

        return max(0, min(1, score))  # Normalize to [0, 1]
Filter low-quality feedback to prevent model degradation. Set appropriate quality thresholds.
3

Implement Learning Triggers

Define when and how to trigger learning updates:
class LearningScheduler:
    """
    Schedule continuous learning updates
    """

    def __init__(self):
        self.triggers = {
            'sample_count': 100,      # Min samples
            'time_interval': 3600,    # Max seconds
            'performance_drop': 0.1,  # Trigger on degradation
            'error_threshold': 0.05   # Error rate trigger
        }
        self.last_update = time.time()
        self.baseline_performance = None

    def should_trigger(self, metrics, sample_count):
        """
        Determine if learning should trigger
        """
        # Sample count trigger
        if sample_count >= self.triggers['sample_count']:
            return True, 'sample_threshold'

        # Time-based trigger
        if time.time() - self.last_update > self.triggers['time_interval']:
            return True, 'time_interval'

        # Performance degradation trigger
        if self.baseline_performance:
            current = metrics.get('accuracy', 1.0)
            if self.baseline_performance - current > self.triggers['performance_drop']:
                return True, 'performance_drop'

        # Error rate trigger
        if metrics.get('error_rate', 0) > self.triggers['error_threshold']:
            return True, 'high_errors'

        return False, None

    async def execute_update(self, training_samples):
        """
        Execute learning update
        """
        print(f"Triggering update with {len(training_samples)} samples")

        # Run online optimization
        optimizer = OnlineOptimizer()
        improved_model = await optimizer.optimize(
            training_samples,
            num_iterations=50
        )

        # Update timestamp
        self.last_update = time.time()

        return improved_model
4

Deploy Update Pipeline

Implement safe model updates in production:
class SafeModelUpdater:
    """
    Safely update models in production
    """

    def __init__(self, primary_model, validator):
        self.primary_model = primary_model
        self.validator = validator
        self.shadow_model = None
        self.update_history = []

    async def update(self, new_model):
        """
        Safe production update with validation
        """
        # Step 1: Validate new model
        validation_result = await self.validator.validate(new_model)

        if not validation_result.passed:
            print(f"Model failed validation: {validation_result.errors}")
            return False

        # Step 2: Shadow deployment
        self.shadow_model = new_model
        shadow_metrics = await self.shadow_test(duration=300)  # 5 min test

        # Step 3: Compare performance
        if shadow_metrics['performance'] < self.primary_model.performance * 0.95:
            print("Shadow model underperforming, rejecting update")
            return False

        # Step 4: Gradual rollout
        await self.gradual_rollout(new_model)

        # Step 5: Update primary
        self.primary_model = new_model
        self.update_history.append({
            'timestamp': time.time(),
            'performance': shadow_metrics['performance']
        })

        return True

    async def shadow_test(self, duration):
        """
        Test model in shadow mode
        """
        start_time = time.time()
        metrics = {'requests': 0, 'successes': 0}

        while time.time() - start_time < duration:
            # Process requests with both models
            request = await self.get_next_request()

            primary_response = self.primary_model.process(request)
            shadow_response = self.shadow_model.process(request)

            # Compare responses
            if self.responses_similar(primary_response, shadow_response):
                metrics['successes'] += 1
            metrics['requests'] += 1

        metrics['performance'] = metrics['successes'] / max(1, metrics['requests'])
        return metrics

    async def gradual_rollout(self, new_model):
        """
        Gradually shift traffic to new model
        """
        rollout_stages = [0.1, 0.25, 0.5, 0.75, 1.0]

        for percentage in rollout_stages:
            self.traffic_split = percentage
            await asyncio.sleep(60)  # Monitor for 1 minute

            metrics = await self.collect_metrics()
            if metrics['error_rate'] > 0.05:
                print(f"High error rate at {percentage*100}% rollout, rolling back")
                self.traffic_split = 0
                return False

        return True
5

Monitor Learning Progress

Track continuous learning effectiveness:
import wandb
from datetime import datetime

class LearningMonitor:
    """
    Monitor continuous learning progress
    """

    def __init__(self):
        wandb.init(project="atlas-continuous-learning")
        self.metrics_buffer = []

    def log_update(self, update_info):
        """
        Log learning update event
        """
        wandb.log({
            'update_timestamp': datetime.now().isoformat(),
            'samples_used': update_info['sample_count'],
            'trigger_reason': update_info['trigger'],
            'performance_before': update_info['performance_before'],
            'performance_after': update_info['performance_after'],
            'improvement': update_info['improvement'],
            'update_duration': update_info['duration']
        })

    def log_production_metrics(self, metrics):
        """
        Log ongoing production metrics
        """
        wandb.log({
            'accuracy': metrics['accuracy'],
            'latency_p50': metrics['latency_p50'],
            'latency_p99': metrics['latency_p99'],
            'error_rate': metrics['error_rate'],
            'feedback_score': metrics['avg_feedback'],
            'requests_per_second': metrics['rps']
        })

    def generate_report(self):
        """
        Generate learning effectiveness report
        """
        report = {
            'total_updates': len(self.update_history),
            'avg_improvement': np.mean([u['improvement'] for u in self.update_history]),
            'learning_velocity': self.compute_learning_velocity(),
            'stability_score': self.compute_stability()
        }

        return report

Advanced Techniques

Selective Learning

Learn from high-value interactions:
class SelectiveLearner:
    """
    Selectively learn from high-value feedback
    """

    def __init__(self):
        self.value_estimator = self.load_value_model()
        self.learning_buffer = PriorityQueue()

    def estimate_learning_value(self, feedback_event):
        """
        Estimate value of learning from this event
        """
        features = {
            'uncertainty': self.compute_uncertainty(feedback_event.prompt),
            'novelty': self.compute_novelty(feedback_event.prompt),
            'error_magnitude': abs(feedback_event.expected - feedback_event.actual),
            'user_expertise': feedback_event.metadata.get('user_level', 0),
            'task_importance': feedback_event.metadata.get('priority', 0)
        }

        value_score = self.value_estimator.predict(features)
        return value_score

    def add_to_buffer(self, event):
        """
        Add high-value events to learning buffer
        """
        value = self.estimate_learning_value(event)

        if value > self.threshold:
            self.learning_buffer.put((-value, event))  # Negative for max-heap

    def get_learning_batch(self, batch_size=32):
        """
        Get highest-value samples for learning
        """
        batch = []
        for _ in range(min(batch_size, self.learning_buffer.qsize())):
            _, event = self.learning_buffer.get()
            batch.append(event)
        return batch

Catastrophic Forgetting Prevention

Prevent degradation on previously learned tasks:
class MemoryConsolidation:
    """
    Prevent catastrophic forgetting during continuous learning
    """

    def __init__(self, memory_size=1000):
        self.episodic_memory = []
        self.memory_size = memory_size
        self.task_boundaries = []

    def store_experiences(self, experiences, task_id):
        """
        Store representative experiences
        """
        # Select diverse, representative samples
        representative = self.select_representative(experiences)

        for exp in representative:
            if len(self.episodic_memory) >= self.memory_size:
                # Replace oldest or least important
                self.episodic_memory.pop(0)

            self.episodic_memory.append({
                'experience': exp,
                'task_id': task_id,
                'importance': self.compute_importance(exp)
            })

    def create_replay_batch(self, current_batch, replay_ratio=0.5):
        """
        Mix current and past experiences
        """
        replay_size = int(len(current_batch) * replay_ratio)

        # Sample from episodic memory
        if self.episodic_memory:
            replay_samples = random.sample(
                self.episodic_memory,
                min(replay_size, len(self.episodic_memory))
            )

            # Combine with current batch
            combined_batch = current_batch + [s['experience'] for s in replay_samples]
            random.shuffle(combined_batch)

            return combined_batch

        return current_batch

    def compute_importance(self, experience):
        """
        Compute importance for retention
        """
        # Factors: difficulty, uniqueness, performance impact
        return experience.get('learning_progress', 0.5)

Active Learning

Actively seek informative feedback:
class ActiveLearner:
    """
    Actively request feedback on uncertain cases
    """

    def __init__(self, uncertainty_model):
        self.uncertainty_model = uncertainty_model
        self.feedback_requests = []

    def should_request_feedback(self, prompt, response):
        """
        Decide whether to request feedback
        """
        uncertainty = self.uncertainty_model.compute_uncertainty(
            prompt,
            response
        )

        # Request feedback for uncertain cases
        if uncertainty > self.uncertainty_threshold:
            return True

        # Random sampling for baseline
        if random.random() < self.baseline_rate:
            return True

        return False

    def generate_feedback_request(self, prompt, response):
        """
        Create user-friendly feedback request
        """
        return {
            'message': "Help us improve! Was this response helpful?",
            'options': [
                {'label': 'Very helpful', 'value': 1.0},
                {'label': 'Somewhat helpful', 'value': 0.5},
                {'label': 'Not helpful', 'value': 0.0}
            ],
            'context': {
                'prompt': prompt,
                'response': response,
                'uncertainty': self.uncertainty_model.last_uncertainty
            }
        }

Production Patterns

Pattern 1: Blue-Green Deployment

class BlueGreenDeployment:
    """
    Safe production updates with instant rollback
    """

    def __init__(self):
        self.blue_model = self.load_model('blue')
        self.green_model = None
        self.active = 'blue'

    async def deploy_update(self, new_model):
        """
        Deploy update to inactive environment
        """
        # Deploy to green
        self.green_model = new_model

        # Test green environment
        test_result = await self.test_green()

        if test_result.success:
            # Switch traffic
            self.active = 'green'
            print("Switched to green environment")
        else:
            # Keep blue active
            print("Green deployment failed, staying on blue")

        return test_result

    def rollback(self):
        """
        Instant rollback to previous version
        """
        self.active = 'blue' if self.active == 'green' else 'green'
        print(f"Rolled back to {self.active}")

Pattern 2: Canary Deployment

class CanaryDeployment:
    """
    Gradual rollout with monitoring
    """

    def __init__(self):
        self.stable_model = self.load_model('stable')
        self.canary_model = None
        self.canary_percentage = 0

    async def deploy_canary(self, new_model):
        """
        Gradually increase traffic to new model
        """
        self.canary_model = new_model

        stages = [1, 5, 10, 25, 50, 100]  # Percentage stages

        for percentage in stages:
            self.canary_percentage = percentage
            print(f"Canary at {percentage}%")

            # Monitor for 5 minutes
            await asyncio.sleep(300)

            metrics = await self.collect_metrics()

            if not self.health_check(metrics):
                print(f"Canary failed at {percentage}%")
                self.canary_percentage = 0
                return False

        # Full deployment successful
        self.stable_model = self.canary_model
        self.canary_model = None
        return True

Monitoring Dashboard

Create a comprehensive monitoring dashboard:
def create_dashboard():
    """
    Create Streamlit dashboard for continuous learning
    """
    import streamlit as st
    import plotly.graph_objs as go

    st.title("ATLAS Continuous Learning Dashboard")

    # Learning progress
    col1, col2, col3 = st.columns(3)

    with col1:
        st.metric(
            "Total Updates",
            metrics['total_updates'],
            delta=metrics['updates_today']
        )

    with col2:
        st.metric(
            "Avg Improvement",
            f"{metrics['avg_improvement']:.1%}",
            delta=f"{metrics['recent_improvement']:.1%}"
        )

    with col3:
        st.metric(
            "Learning Velocity",
            f"{metrics['velocity']:.2f}",
            delta=f"{metrics['velocity_change']:.2f}"
        )

    # Performance over time
    fig = go.Figure()
    fig.add_trace(go.Scatter(
        x=metrics['timestamps'],
        y=metrics['performance'],
        mode='lines+markers',
        name='Performance'
    ))
    fig.add_trace(go.Scatter(
        x=metrics['update_times'],
        y=metrics['update_performance'],
        mode='markers',
        marker=dict(size=10, color='red'),
        name='Updates'
    ))
    st.plotly_chart(fig)

    # Feedback distribution
    st.subheader("Feedback Distribution")
    feedback_chart = go.Figure(data=[
        go.Bar(
            x=['Positive', 'Neutral', 'Negative'],
            y=metrics['feedback_distribution']
        )
    ])
    st.plotly_chart(feedback_chart)

    # Recent learning events
    st.subheader("Recent Learning Events")
    st.dataframe(metrics['recent_events'])

Troubleshooting

Problem: Performance drops after updateSolutions:
  • Increase validation threshold
  • Implement stricter shadow testing
  • Increase replay ratio for memory consolidation
  • Review feedback quality filters
Problem: Improvements are minimalSolutions:
  • Increase learning rate carefully
  • Focus on high-value feedback
  • Improve feedback signal quality
  • Consider offline retraining
Problem: Too many updates affecting stabilitySolutions:
  • Increase sample count threshold
  • Implement update rate limiting
  • Batch updates into larger intervals
  • Add stability metrics to triggers

Next Steps