Overview
Continuous learning enables ATLAS to improve automatically from production usage, creating a self-improving system that gets better with every interaction. This approach combines online optimization with production feedback loops.Atlas Core now focuses on offline GRPO training. The workflows in this guide are implemented in the
atlas-sdk runtime and documented here for architectural context.System Architecture
Implementation
1
Set Up Feedback Collection
Implement feedback mechanisms in your production system:
Copy
Ask AI
from dataclasses import dataclass
from typing import Optional
import time
@dataclass
class FeedbackEvent:
request_id: str
prompt: str
response: str
user_rating: Optional[float] = None
implicit_signal: Optional[str] = None
timestamp: float = None
metadata: dict = None
class FeedbackCollector:
"""
Collect and process production feedback
"""
def __init__(self, buffer_size=1000):
self.buffer = []
self.buffer_size = buffer_size
async def collect(self, event: FeedbackEvent):
"""
Add feedback event to buffer
"""
if not event.timestamp:
event.timestamp = time.time()
self.buffer.append(event)
# Trigger optimization if buffer full
if len(self.buffer) >= self.buffer_size:
await self.trigger_optimization()
def collect_implicit_feedback(self, request_id: str, signal: str):
"""
Collect implicit signals (copy, share, retry, etc.)
"""
event = FeedbackEvent(
request_id=request_id,
implicit_signal=signal,
timestamp=time.time()
)
self.buffer.append(event)
Implicit signals (copy events, time spent, retries) often provide more reliable feedback than explicit ratings.
2
Process Feedback Signals
Convert various feedback types into training signals:
Copy
Ask AI
class FeedbackProcessor:
"""
Process feedback into training signals
"""
def process_feedback(self, events):
"""
Convert feedback events to training data
"""
training_samples = []
for event in events:
score = self.compute_score(event)
if score > self.quality_threshold:
training_samples.append({
'prompt': event.prompt,
'response': event.response,
'reward': score,
'metadata': event.metadata
})
return training_samples
def compute_score(self, event):
"""
Unified scoring from multiple signals
"""
score = 0.0
# Explicit rating (if available)
if event.user_rating:
score += event.user_rating * 0.5
# Implicit signals
signal_scores = {
'copy': 0.8, # User copied response
'share': 0.9, # User shared response
'retry': -0.3, # User requested retry
'dismiss': -0.5, # User dismissed quickly
'engage': 0.6 # Long engagement time
}
if event.implicit_signal:
score += signal_scores.get(event.implicit_signal, 0) * 0.5
return max(0, min(1, score)) # Normalize to [0, 1]
Filter low-quality feedback to prevent model degradation. Set appropriate quality thresholds.
3
Implement Learning Triggers
Define when and how to trigger learning updates:
Copy
Ask AI
class LearningScheduler:
"""
Schedule continuous learning updates
"""
def __init__(self):
self.triggers = {
'sample_count': 100, # Min samples
'time_interval': 3600, # Max seconds
'performance_drop': 0.1, # Trigger on degradation
'error_threshold': 0.05 # Error rate trigger
}
self.last_update = time.time()
self.baseline_performance = None
def should_trigger(self, metrics, sample_count):
"""
Determine if learning should trigger
"""
# Sample count trigger
if sample_count >= self.triggers['sample_count']:
return True, 'sample_threshold'
# Time-based trigger
if time.time() - self.last_update > self.triggers['time_interval']:
return True, 'time_interval'
# Performance degradation trigger
if self.baseline_performance:
current = metrics.get('accuracy', 1.0)
if self.baseline_performance - current > self.triggers['performance_drop']:
return True, 'performance_drop'
# Error rate trigger
if metrics.get('error_rate', 0) > self.triggers['error_threshold']:
return True, 'high_errors'
return False, None
async def execute_update(self, training_samples):
"""
Execute learning update
"""
print(f"Triggering update with {len(training_samples)} samples")
# Trigger the atlas-sdk continual learning job
optimizer = OnlineOptimizer()
improved_model = await optimizer.optimize(
training_samples,
num_iterations=50
)
# Update timestamp
self.last_update = time.time()
return improved_model
4
Deploy Update Pipeline
Implement safe model updates in production:
Copy
Ask AI
class SafeModelUpdater:
"""
Safely update models in production
"""
def __init__(self, primary_model, validator):
self.primary_model = primary_model
self.validator = validator
self.shadow_model = None
self.update_history = []
async def update(self, new_model):
"""
Safe production update with validation
"""
# Step 1: Validate new model
validation_result = await self.validator.validate(new_model)
if not validation_result.passed:
print(f"Model failed validation: {validation_result.errors}")
return False
# Step 2: Shadow deployment
self.shadow_model = new_model
shadow_metrics = await self.shadow_test(duration=300) # 5 min test
# Step 3: Compare performance
if shadow_metrics['performance'] < self.primary_model.performance * 0.95:
print("Shadow model underperforming, rejecting update")
return False
# Step 4: Gradual rollout
await self.gradual_rollout(new_model)
# Step 5: Update primary
self.primary_model = new_model
self.update_history.append({
'timestamp': time.time(),
'performance': shadow_metrics['performance']
})
return True
async def shadow_test(self, duration):
"""
Test model in shadow mode
"""
start_time = time.time()
metrics = {'requests': 0, 'successes': 0}
while time.time() - start_time < duration:
# Process requests with both models
request = await self.get_next_request()
primary_response = self.primary_model.process(request)
shadow_response = self.shadow_model.process(request)
# Compare responses
if self.responses_similar(primary_response, shadow_response):
metrics['successes'] += 1
metrics['requests'] += 1
metrics['performance'] = metrics['successes'] / max(1, metrics['requests'])
return metrics
async def gradual_rollout(self, new_model):
"""
Gradually shift traffic to new model
"""
rollout_stages = [0.1, 0.25, 0.5, 0.75, 1.0]
for percentage in rollout_stages:
self.traffic_split = percentage
await asyncio.sleep(60) # Monitor for 1 minute
metrics = await self.collect_metrics()
if metrics['error_rate'] > 0.05:
print(f"High error rate at {percentage*100}% rollout, rolling back")
self.traffic_split = 0
return False
return True
5
Monitor Learning Progress
Track continuous learning effectiveness:
Copy
Ask AI
import wandb
from datetime import datetime
class LearningMonitor:
"""
Monitor continuous learning progress
"""
def __init__(self):
wandb.init(project="atlas-continuous-learning")
self.metrics_buffer = []
def log_update(self, update_info):
"""
Log learning update event
"""
wandb.log({
'update_timestamp': datetime.now().isoformat(),
'samples_used': update_info['sample_count'],
'trigger_reason': update_info['trigger'],
'performance_before': update_info['performance_before'],
'performance_after': update_info['performance_after'],
'improvement': update_info['improvement'],
'update_duration': update_info['duration']
})
def log_production_metrics(self, metrics):
"""
Log ongoing production metrics
"""
wandb.log({
'accuracy': metrics['accuracy'],
'latency_p50': metrics['latency_p50'],
'latency_p99': metrics['latency_p99'],
'error_rate': metrics['error_rate'],
'feedback_score': metrics['avg_feedback'],
'requests_per_second': metrics['rps']
})
def generate_report(self):
"""
Generate learning effectiveness report
"""
report = {
'total_updates': len(self.update_history),
'avg_improvement': np.mean([u['improvement'] for u in self.update_history]),
'learning_velocity': self.compute_learning_velocity(),
'stability_score': self.compute_stability()
}
return report
Advanced Techniques
Selective Learning
Learn from high-value interactions:Copy
Ask AI
class SelectiveLearner:
"""
Selectively learn from high-value feedback
"""
def __init__(self):
self.value_estimator = self.load_value_model()
self.learning_buffer = PriorityQueue()
def estimate_learning_value(self, feedback_event):
"""
Estimate value of learning from this event
"""
features = {
'uncertainty': self.compute_uncertainty(feedback_event.prompt),
'novelty': self.compute_novelty(feedback_event.prompt),
'error_magnitude': abs(feedback_event.expected - feedback_event.actual),
'user_expertise': feedback_event.metadata.get('user_level', 0),
'task_importance': feedback_event.metadata.get('priority', 0)
}
value_score = self.value_estimator.predict(features)
return value_score
def add_to_buffer(self, event):
"""
Add high-value events to learning buffer
"""
value = self.estimate_learning_value(event)
if value > self.threshold:
self.learning_buffer.put((-value, event)) # Negative for max-heap
def get_learning_batch(self, batch_size=32):
"""
Get highest-value samples for learning
"""
batch = []
for _ in range(min(batch_size, self.learning_buffer.qsize())):
_, event = self.learning_buffer.get()
batch.append(event)
return batch
Catastrophic Forgetting Prevention
Prevent degradation on previously learned tasks:Copy
Ask AI
class MemoryConsolidation:
"""
Prevent catastrophic forgetting during continuous learning
"""
def __init__(self, memory_size=1000):
self.episodic_memory = []
self.memory_size = memory_size
self.task_boundaries = []
def store_experiences(self, experiences, task_id):
"""
Store representative experiences
"""
# Select diverse, representative samples
representative = self.select_representative(experiences)
for exp in representative:
if len(self.episodic_memory) >= self.memory_size:
# Replace oldest or least important
self.episodic_memory.pop(0)
self.episodic_memory.append({
'experience': exp,
'task_id': task_id,
'importance': self.compute_importance(exp)
})
def create_replay_batch(self, current_batch, replay_ratio=0.5):
"""
Mix current and past experiences
"""
replay_size = int(len(current_batch) * replay_ratio)
# Sample from episodic memory
if self.episodic_memory:
replay_samples = random.sample(
self.episodic_memory,
min(replay_size, len(self.episodic_memory))
)
# Combine with current batch
combined_batch = current_batch + [s['experience'] for s in replay_samples]
random.shuffle(combined_batch)
return combined_batch
return current_batch
def compute_importance(self, experience):
"""
Compute importance for retention
"""
# Factors: difficulty, uniqueness, performance impact
return experience.get('learning_progress', 0.5)
Active Learning
Actively seek informative feedback:Copy
Ask AI
class ActiveLearner:
"""
Actively request feedback on uncertain cases
"""
def __init__(self, uncertainty_model):
self.uncertainty_model = uncertainty_model
self.feedback_requests = []
def should_request_feedback(self, prompt, response):
"""
Decide whether to request feedback
"""
uncertainty = self.uncertainty_model.compute_uncertainty(
prompt,
response
)
# Request feedback for uncertain cases
if uncertainty > self.uncertainty_threshold:
return True
# Random sampling for baseline
if random.random() < self.baseline_rate:
return True
return False
def generate_feedback_request(self, prompt, response):
"""
Create user-friendly feedback request
"""
return {
'message': "Help us improve! Was this response helpful?",
'options': [
{'label': 'Very helpful', 'value': 1.0},
{'label': 'Somewhat helpful', 'value': 0.5},
{'label': 'Not helpful', 'value': 0.0}
],
'context': {
'prompt': prompt,
'response': response,
'uncertainty': self.uncertainty_model.last_uncertainty
}
}
Production Patterns
Pattern 1: Blue-Green Deployment
Copy
Ask AI
class BlueGreenDeployment:
"""
Safe production updates with instant rollback
"""
def __init__(self):
self.blue_model = self.load_model('blue')
self.green_model = None
self.active = 'blue'
async def deploy_update(self, new_model):
"""
Deploy update to inactive environment
"""
# Deploy to green
self.green_model = new_model
# Test green environment
test_result = await self.test_green()
if test_result.success:
# Switch traffic
self.active = 'green'
print("Switched to green environment")
else:
# Keep blue active
print("Green deployment failed, staying on blue")
return test_result
def rollback(self):
"""
Instant rollback to previous version
"""
self.active = 'blue' if self.active == 'green' else 'green'
print(f"Rolled back to {self.active}")
Pattern 2: Canary Deployment
Copy
Ask AI
class CanaryDeployment:
"""
Gradual rollout with monitoring
"""
def __init__(self):
self.stable_model = self.load_model('stable')
self.canary_model = None
self.canary_percentage = 0
async def deploy_canary(self, new_model):
"""
Gradually increase traffic to new model
"""
self.canary_model = new_model
stages = [1, 5, 10, 25, 50, 100] # Percentage stages
for percentage in stages:
self.canary_percentage = percentage
print(f"Canary at {percentage}%")
# Monitor for 5 minutes
await asyncio.sleep(300)
metrics = await self.collect_metrics()
if not self.health_check(metrics):
print(f"Canary failed at {percentage}%")
self.canary_percentage = 0
return False
# Full deployment successful
self.stable_model = self.canary_model
self.canary_model = None
return True
Monitoring Dashboard
Create a comprehensive monitoring dashboard:Copy
Ask AI
def create_dashboard():
"""
Create Streamlit dashboard for continuous learning
"""
import streamlit as st
import plotly.graph_objs as go
st.title("ATLAS Continuous Learning Dashboard")
# Learning progress
col1, col2, col3 = st.columns(3)
with col1:
st.metric(
"Total Updates",
metrics['total_updates'],
delta=metrics['updates_today']
)
with col2:
st.metric(
"Avg Improvement",
f"{metrics['avg_improvement']:.1%}",
delta=f"{metrics['recent_improvement']:.1%}"
)
with col3:
st.metric(
"Learning Velocity",
f"{metrics['velocity']:.2f}",
delta=f"{metrics['velocity_change']:.2f}"
)
# Performance over time
fig = go.Figure()
fig.add_trace(go.Scatter(
x=metrics['timestamps'],
y=metrics['performance'],
mode='lines+markers',
name='Performance'
))
fig.add_trace(go.Scatter(
x=metrics['update_times'],
y=metrics['update_performance'],
mode='markers',
marker=dict(size=10, color='red'),
name='Updates'
))
st.plotly_chart(fig)
# Feedback distribution
st.subheader("Feedback Distribution")
feedback_chart = go.Figure(data=[
go.Bar(
x=['Positive', 'Neutral', 'Negative'],
y=metrics['feedback_distribution']
)
])
st.plotly_chart(feedback_chart)
# Recent learning events
st.subheader("Recent Learning Events")
st.dataframe(metrics['recent_events'])
Troubleshooting
Model Performance Degradation
Model Performance Degradation
Problem: Performance drops after updateSolutions:
- Increase validation threshold
- Implement stricter shadow testing
- Increase replay ratio for memory consolidation
- Review feedback quality filters
Slow Learning Convergence
Slow Learning Convergence
Problem: Improvements are minimalSolutions:
- Increase learning rate carefully
- Focus on high-value feedback
- Improve feedback signal quality
- Consider offline retraining
High Update Frequency
High Update Frequency
Problem: Too many updates affecting stabilitySolutions:
- Increase sample count threshold
- Implement update rate limiting
- Batch updates into larger intervals
- Add stability metrics to triggers