Overview

Online optimization allows you to enhance any model’s performance on specific tasks in just 2 hours using API-based training. This approach leverages pre-trained ATLAS teachers and reflective mutation for rapid improvement. Online Learning Architecture

Prerequisites

  • OpenAI API key (for optimization agent)
  • Pre-trained ATLAS teacher model
  • Task-specific evaluation data
  • ~$10 in API credits

Quick Start

1

Set Up Environment

Configure API credentials and install dependencies:
# Set API key
export OPENAI_API_KEY="your-api-key"

# Install requirements
pip install openai transformers accelerate
pip install atlas-online  # Coming soon to PyPI
Online optimization uses GPT-4 for reflective mutation. Ensure your API key has sufficient credits.
2

Prepare Task Data

Create evaluation samples for your specific task:
# task_samples.json
[
    {
        "prompt": "Debug: Service returns 503 errors intermittently",
        "expected_response": "Check service mesh configuration, verify mTLS policies...",
        "domain": "sre"
    },
    {
        "prompt": "Optimize this SQL query for better performance",
        "expected_response": "Add index on join columns, use EXPLAIN ANALYZE...",
        "domain": "database"
    }
    # Add 10-20 diverse examples
]
Use representative samples that cover edge cases. Quality matters more than quantity.
3

Run Online Optimization

Execute the optimization script:
./scripts/openai_agent_atlas.sh \
  configs/optimize/default.yaml \
  task_samples=task_samples.json \
  num_iterations=100 \
  temperature=0.7
The optimization process:
  1. Evaluates baseline performance
  2. Generates teaching variations
  3. Tests improvements
  4. Creates skill capsules
4

Deploy Optimized Model

Use the enhanced teaching strategies:
from atlas_online import OnlineATLAS

# Load optimized teaching
atlas = OnlineATLAS.from_optimization(
    "optimization_results/best_strategy.json"
)

# Apply to new queries
response = atlas.enhance(
    "Debug: Database connection pool exhausted"
)

Optimization Algorithm

Reflective Mutation Process

The online optimization uses reflective mutation to evolve teaching strategies:
class ReflectiveMutation:
    """
    Evolutionary optimization for teaching strategies
    """

    def __init__(self, evaluator, mutation_agent):
        self.evaluator = evaluator
        self.mutation_agent = mutation_agent  # GPT-4
        self.population = []

    def optimize(self, task_samples, num_iterations=100):
        """
        Main optimization loop
        """
        for iteration in range(num_iterations):
            # Step 1: Evaluate current strategies
            scores = self.evaluate_population(task_samples)

            # Step 2: Select best performers
            elite = self.select_elite(scores)

            # Step 3: Generate mutations
            mutations = self.mutate_strategies(elite)

            # Step 4: Update population
            self.population = elite + mutations

            # Step 5: Log progress
            self.log_iteration(iteration, scores)

        return self.get_best_strategy()

    def mutate_strategies(self, strategies):
        """
        Use LLM to intelligently mutate teaching strategies
        """
        mutations = []
        for strategy in strategies:
            prompt = f"""
            Current teaching strategy:
            {strategy}

            Performance: {strategy.score}
            Failures: {strategy.failure_cases}

            Generate an improved variant that addresses the failures.
            """

            mutation = self.mutation_agent.generate(prompt)
            mutations.append(mutation)

        return mutations

Performance Tracking

Monitor optimization progress in real-time:
class OptimizationMonitor:
    def __init__(self):
        self.metrics = {
            'iteration': [],
            'best_score': [],
            'mean_score': [],
            'diversity': []
        }

    def update(self, iteration, population):
        scores = [p.score for p in population]
        self.metrics['iteration'].append(iteration)
        self.metrics['best_score'].append(max(scores))
        self.metrics['mean_score'].append(np.mean(scores))
        self.metrics['diversity'].append(self.compute_diversity(population))

    def plot_convergence(self):
        """Visualize optimization progress"""
        import matplotlib.pyplot as plt

        plt.figure(figsize=(12, 4))

        plt.subplot(1, 3, 1)
        plt.plot(self.metrics['iteration'], self.metrics['best_score'])
        plt.xlabel('Iteration')
        plt.ylabel('Best Score')
        plt.title('Optimization Progress')

        plt.subplot(1, 3, 2)
        plt.plot(self.metrics['iteration'], self.metrics['mean_score'])
        plt.xlabel('Iteration')
        plt.ylabel('Mean Score')
        plt.title('Population Performance')

        plt.subplot(1, 3, 3)
        plt.plot(self.metrics['iteration'], self.metrics['diversity'])
        plt.xlabel('Iteration')
        plt.ylabel('Diversity')
        plt.title('Strategy Diversity')

        plt.tight_layout()
        plt.savefig('optimization_progress.png')

Configuration Options

Optimization Parameters

# configs/optimize/default.yaml
optimization:
  num_iterations: 100        # Total optimization steps
  population_size: 20        # Strategies per generation
  elite_ratio: 0.2          # Top performers to keep
  mutation_rate: 0.8        # Probability of mutation
  crossover_rate: 0.3       # Probability of combining strategies

evaluation:
  batch_size: 4             # Parallel evaluations
  timeout: 30               # Seconds per evaluation
  success_threshold: 0.7    # Minimum acceptable score

mutation_agent:
  model: "gpt-4-turbo"      # Mutation generation model
  temperature: 0.7          # Creativity level
  max_tokens: 500           # Response length limit

constraints:
  max_teaching_tokens: 200  # Guidance length limit
  min_improvement: 0.05     # Required improvement
  safety_check: true        # Verify non-degradation

Task-Specific Configurations

# configs/optimize/sre.yaml
task_specific:
  domain: "site_reliability"
  keywords: ["kubernetes", "istio", "monitoring", "debugging"]
  success_metrics:
    - "root_cause_identified"
    - "mitigation_proposed"
    - "prevention_suggested"

evaluation:
  success_threshold: 0.8  # Higher bar for critical tasks
  timeout: 45              # More time for complex analysis

Advanced Techniques

Skill Composition

Combine multiple optimized skills:
class SkillComposer:
    """
    Combine specialized skills for complex tasks
    """

    def __init__(self):
        self.skills = {}

    def load_skill(self, name, path):
        """Load optimized skill from file"""
        with open(path) as f:
            self.skills[name] = json.load(f)

    def compose(self, task):
        """
        Select and combine relevant skills
        """
        # Identify required skills
        required_skills = self.analyze_task(task)

        # Combine teaching strategies
        combined_strategy = self.merge_strategies(
            [self.skills[s] for s in required_skills]
        )

        return combined_strategy

    def merge_strategies(self, strategies):
        """
        Intelligently merge multiple strategies
        """
        merged = {
            'diagnostic_approach': self.merge_diagnostics(strategies),
            'teaching_pattern': self.merge_patterns(strategies),
            'safety_checks': self.merge_safety(strategies)
        }
        return merged

Continuous Learning

Implement online learning in production:
class ContinuousOptimizer:
    """
    Continuously improve from production feedback
    """

    def __init__(self, atlas_instance):
        self.atlas = atlas_instance
        self.feedback_buffer = []
        self.optimization_threshold = 100  # Feedback samples

    async def collect_feedback(self, query, response, user_rating):
        """Collect production feedback"""
        self.feedback_buffer.append({
            'query': query,
            'response': response,
            'rating': user_rating,
            'timestamp': time.time()
        })

        # Trigger optimization when threshold reached
        if len(self.feedback_buffer) >= self.optimization_threshold:
            await self.trigger_optimization()

    async def trigger_optimization(self):
        """Run optimization on collected feedback"""
        # Convert feedback to training samples
        samples = self.prepare_samples(self.feedback_buffer)

        # Run online optimization
        optimizer = ReflectiveMutation(self.atlas)
        improved_strategy = optimizer.optimize(samples, num_iterations=50)

        # Update production model
        self.atlas.update_strategy(improved_strategy)

        # Clear buffer
        self.feedback_buffer = []

    def prepare_samples(self, feedback):
        """Convert feedback to optimization samples"""
        samples = []
        for item in feedback:
            if item['rating'] >= 4:  # Positive examples
                samples.append({
                    'prompt': item['query'],
                    'expected_response': item['response'],
                    'weight': item['rating'] / 5.0
                })
        return samples

A/B Testing Strategies

Test optimized strategies in production:
class StrategyABTest:
    """
    A/B test teaching strategies
    """

    def __init__(self, baseline_strategy, optimized_strategy):
        self.strategies = {
            'baseline': baseline_strategy,
            'optimized': optimized_strategy
        }
        self.results = {
            'baseline': {'success': 0, 'total': 0},
            'optimized': {'success': 0, 'total': 0}
        }

    def select_strategy(self, user_id):
        """Deterministic strategy selection"""
        # Use hash for consistent assignment
        if hash(user_id) % 2 == 0:
            return 'baseline'
        return 'optimized'

    def process_request(self, user_id, query):
        """Process with selected strategy"""
        strategy_name = self.select_strategy(user_id)
        strategy = self.strategies[strategy_name]

        response = strategy.enhance(query)

        # Track for analysis
        self.results[strategy_name]['total'] += 1

        return response

    def analyze_results(self):
        """Statistical significance testing"""
        from scipy.stats import chi2_contingency

        # Prepare contingency table
        observed = [
            [self.results['baseline']['success'],
             self.results['baseline']['total'] - self.results['baseline']['success']],
            [self.results['optimized']['success'],
             self.results['optimized']['total'] - self.results['optimized']['success']]
        ]

        chi2, p_value, dof, expected = chi2_contingency(observed)

        return {
            'p_value': p_value,
            'significant': p_value < 0.05,
            'baseline_rate': self.results['baseline']['success'] / max(1, self.results['baseline']['total']),
            'optimized_rate': self.results['optimized']['success'] / max(1, self.results['optimized']['total'])
        }

Monitoring and Debugging

Real-time Monitoring

Track optimization metrics:
import wandb

# Initialize W&B
wandb.init(
    project="atlas-online",
    config={
        "optimization_type": "reflective_mutation",
        "task_domain": "sre",
        "num_iterations": 100
    }
)

# Log during optimization
for iteration in range(num_iterations):
    metrics = optimizer.step()

    wandb.log({
        "iteration": iteration,
        "best_score": metrics["best_score"],
        "mean_score": metrics["mean_score"],
        "diversity": metrics["diversity"],
        "api_cost": metrics["api_cost"]
    })

Debugging Failed Optimizations

Problem: Score plateaus earlySolutions:
# Increase diversity
config.mutation_rate = 0.9
config.population_size = 30

# Add random exploration
config.exploration_rate = 0.2

# Use different mutation model
config.mutation_agent.model = "gpt-4-turbo"
Problem: Exceeding budgetSolutions:
# Reduce population size
config.population_size = 10

# Use caching
config.enable_cache = True

# Batch evaluations
config.evaluation.batch_size = 8
Problem: Overfitting to samplesSolutions:
# Add more diverse samples
# Use cross-validation
config.validation_split = 0.2

# Regularize strategies
config.constraints.complexity_penalty = 0.1

Cost Analysis

Typical costs for online optimization:
Task ComplexityIterationsAPI CallsEstimated Cost
Simple50~500$2-3
Moderate100~1500$5-8
Complex200~3000$10-15
Expert500~7500$25-35

Next Steps