Quick Reference
ATLAS uses configuration files to customize behavior without code changes. Here’s what each directory contains:For Getting Started: Start with
wrappers/ and optimize/. The model/, run/, and trainer/ directories are for advanced RL training (see Architecture docs).Root-level configs:rim_config.yaml- Reward system settings (judges, models, thresholds). See Reward Design.train.yaml- Global training defaults (advanced users only)
Common Configurations
Wrapping Your Existing Agent
A common starting point is integrating ATLAS with your existing agent. All integration configs live inconfigs/wrappers/.
- HTTP API
- Python Function
- CLI Command
- Real Working Example
Wrap any REST API endpoint with ATLAS teaching:How to run:
Online Optimization Settings
Once you have your agent wrapped, configure GEPA optimization inconfigs/optimize/.
- API Models (No GPU)
- vLLM Server (Local GPU)
- Default Config
Use API models for optimization (recommended for getting started):Cost: ~$10 for 50 iterations with 10 examplesTime: ~2 hoursRun it:
Dataset Configuration
Configure which dataset to use for optimization inconfigs/data/.
- Built-in Datasets
- Custom Dataset
- Use in Wrapper
Use ATLAS curated datasets from HuggingFace:Available datasets:
arc-atlas-rl: RL training data (default)arc-atlas-sft: SFT training data- See
configs/data/for more options
Configuration Patterns
Pattern 1: Quick Start with Defaults
Use the quickstart config which inherits sensible defaults:Pattern 2: Environment Variables
Use environment variables for secrets and dynamic values:Pattern 3: Compose Configs with Hydra
Create task-specific configs that inherit from base configs:Key Configuration Fields
Model Selection
Model Selection
student_model: The model being improved- API models:
gpt-4o,gpt-4o-mini,claude-3-opus - Local models:
Qwen/Qwen3-4B,meta-llama/Llama-3-8B
teacher_model: The model providing guidance- Recommended:
Arc-Intelligence/ATLAS-8B-Thinking(reasoning tasks) - Alternative:
Arc-Intelligence/ATLAS-8B-Instruct(coding tasks) - API:
gpt-5,gpt-4o(requires API access)
reflection_lm: Model for GEPA prompt optimization- Recommended:
gpt-5orgpt-4o(highest quality) - Budget:
gpt-4o-mini(faster, cheaper)
Generation Settings
Generation Settings
generation_config.max_tokens: Maximum output length (default: 2048)generation_config.temperature: Sampling randomness (0.0-1.0)- Lower (0.3-0.5): Focused, deterministic responses
- Higher (0.7-0.9): Creative, diverse responses
generation_config.diagnostic_max_tokens: Max tokens for diagnostic probe (default: 500)generation_config.timeout: Request timeout in seconds (default: 300)GEPA Parameters
GEPA Parameters
max_metric_calls: Optimization budget (default: 50)- Development: 20-50 iterations (~$5-10)
- Production: 100-200 iterations (~$20-40)
gepa_config.candidate_selection_strategy: How to select candidatespareto: Multi-objective optimization (recommended)greedy: Single best candidate
gepa_config.module_selector: Which prompts to optimizeall: Optimize all teaching prompts (default)single: Optimize only teacher_adaptive_template (compatibility mode)
gepa_config.reflection_minibatch_size: Examples for reflection (default: 5)Integration Settings
Integration Settings
compatibility_mode: Enable for custom agents (recommended: true)use_vllm_client: Use local vLLM server (default: false)true: Connect to vLLM atvllm_host:vllm_portfalse: Use API models
max_litellm_workers: Parallel API workers (default: 100)- Higher: Faster but more API rate limit risk
- Lower: Safer for rate limits
trace_storage: Where to save interaction traces (default: traces/optimize_traces.jsonl)output: Where to save optimized prompts (default: optimized_prompts.json)Monitoring Settings
Monitoring Settings
wandb.enabled: Enable Weights & Biases logging (default: false)wandb.project: W&B project namewandb.tags: Tags for this run (list)wandb.notes: Run descriptionExample:Troubleshooting
Error: Could not find wrappers.my_agent
Error: Could not find wrappers.my_agent
Problem: Config file not found in expected locationSolution: Ensure config is in correct directory
Error: KeyError: 'response_field'
Error: KeyError: 'response_field'
Problem: Your API returns different field name than configuredDebug: Check actual API response
Error: Timeout after 60s
Error: Timeout after 60s
Problem: Default timeout too short for slow modelsSolution: Increase timeout in generation_config
Error: API rate limit exceeded
Error: API rate limit exceeded
Problem: Too many parallel workers hitting rate limitsSolution: Reduce worker count
Teaching not improving performance
Teaching not improving performance
Problem: Teaching prompts not effective for your taskSolutions:
- Verify teacher model is stronger than student
- Customize seed_prompts for your domain
- Increase max_metric_calls for more optimization
- Check that examples in trainset are relevant
Out of memory with vLLM
Out of memory with vLLM
Problem: Model too large for GPUSolutions: