This page provides examples of how to use Arc Memory’s simulation feature to predict the impact of code changes before merging them. The simulation feature helps you understand potential risks and make more informed decisions.
# Filter by servicearc sim history --service auth-service# Filter by scenarioarc sim history --scenario network_latency# Filter by risk score rangearc sim history --risk 50..100# Combine filtersarc sim history --service api-gateway --scenario memory_usage --risk 30..70
You can also run simulations programmatically using the SDK:
Copy
from arc_memory import ArcMemory# Initialize Arc Memoryarc = ArcMemory()# Run a simulationsimulation = arc.simulate( scenario="network_latency", branch="main", sandbox="local", use_memory=True)# Process the resultsprint(f"Simulation ID: {simulation.id}")print(f"Risk Score: {simulation.risk_score}/100")print(f"Affected Services: {', '.join(simulation.affected_services)}")print(f"Analysis: {simulation.analysis}")# Get recommendationsfor recommendation in simulation.recommendations: print(f"- {recommendation}")# Get metricsfor metric in simulation.metrics: print(f"{metric.name}: {metric.value} {metric.unit}")
# Run with debug loggingarc sim run --debug# Check if sandbox environment is properly configuredarc doctor# Try a different sandboxarc sim run --sandbox local
If you believe the simulation results are inaccurate:
Copy
# Try with memory enabledarc sim run --memory# Use a more isolated sandboxarc sim run --sandbox e2b# Run multiple scenariosarc sim run --scenario network_latency,memory_usage,cpu_usage